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Abstract

Undamped oscillators are frequently used as a means to minimize excess vibration in flexible structures.
In this paper, parallel vibration absorbers are employed to solve the inverse problem of dictating a node
location, i.e., a point of zero vibration, for an arbitrarily supported linear structure subjected to multiple
harmonic excitations. When the attachment location for the oscillators and the desired node location
coincide (or collocated), it is always possible to select a set of spring–mass parameters such that a node is
induced at the desired location for an input consisting of multiple harmonics. When the attachment and
the specified node locations are not collocated, however, it is only possible to induce a node at certain
locations along the elastic structure for the same input. When the input consists of two harmonics with
closely spaced frequencies, it is possible to induce a point of nearly zero amplitude for frequencies in the
range between the two driving frequencies. Moreover, when the specified node locations are in the vicinity
of one another, a region of nearly zero deflections can be enforced, effectively quenching vibration in that
segment of the structure. Finally, the proposed algorithm can be easily modified and extended to enforcing
more than one node when the structure is being excited by multiple harmonics, for both the collocated and
non-collocated cases. A procedure to guide the proper selection of the spring–mass parameters is outlined
in detail, and numerical case studies are presented to verify the utility of the proposed scheme of imposing
see front matter r 2005 Elsevier Ltd. All rights reserved.
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one or multiple nodes for an arbitrarily supported linear structure subjected to an input consisting of
multiple harmonics.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Over the years a lot of work has been done on using vibration absorbers to control and to
minimize excess vibration and sound radiation in structural systems, hence only a few selected
references are cited here [1–13]. Interestingly, properly tuned spring–mass systems can also be
used to dictate the node locations or points of zero displacement, thereby offering an alternative
means of quenching excess vibration.
In Ref. [14], Cha and Pierre used a chain of oscillators to passively impose a single node for the

normal modes of any arbitrarily supported elastic structure. The desired node can either coincide
with the oscillator chain or it can be located elsewhere. A procedure to guide the proper selection of
the oscillator chain parameters for the purpose of inducing a single node for multiple normal modes
was outlined in detail. In Ref. [15], Cha developed an approach that used parallel sprung masses to
induce multiple nodes for any normal mode of an arbitrarily supported, linear elastic structure. By
selecting the appropriate sprung masses, their attachment locations can be made to coincide exactly
with the nodes of the structure, thereby allowing the locations of the nodes to be specified anywhere
along the structure and for any normal mode. The focus of Refs. [14,15] was on imposing nodes for
the normal modes. In Ref. [16], spring–mass systems were used to induce a single or multiple nodes
anywhere along an elastic structure that is harmonically excited with a localized force, subjected to
the constraints of tolerable vibration amplitude of the masses. An efficient procedure for tuning the
sprung masses was proposed, and numerical experiments validated the utility of the approach.
While useful, the methodology applies only when the structure is subjected to a single harmonic.
Unfortunately, physical inputs seldom consist of a single harmonic excitation.
In this paper, elastically mounted masses are used to induce a single or multiple nodes anywhere

along an arbitrarily supported structure that is under general dynamic loads. The proposed
scheme can be used to suppress excess vibration for a structure that is subjected to any arbitrary
input, as long as its spectrum and dominant frequencies are known. The ability to impose a single
or multiple nodes anywhere on the structure is beneficial because it offers an alternative approach
to quenching excess vibration. Moreover, it allows delicate and sensitive instruments to be
mounted near or at a region where there is little or no vibration. Thus, the proposed scheme
allows certain points along the structure to remain stationary without using any rigid supports.
Interestingly, the same solution scheme can be easily extended to accommodate other cases. For
example, when the input consists of two harmonics with closely spaced frequencies, it is possible
to induce a point of nearly zero amplitude for frequencies in the range between the two driving
frequencies. This enables any point along the structure to remain nearly motionless when the
structure is driven by a single harmonic whose excitation frequency has a tendency to drift.
Finally, the algorithm can also be applied to impose multiple nodes anywhere along the structure.
This is beneficial because if the nodes are closely spaced, a region of nearly zero amplitudes can be
enforced, thereby quenching vibration in that segment of the structure when it is subjected to an
input with multiple harmonics.
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2. Theory

Consider an arbitrarily supported linear structure carrying a set of S parallel oscillators as
shown in Fig. 1. A localized force

f ðtÞ ¼
Xp

i¼1

Fie
joi t (1)

is applied to the structure at xf , where p is the number of harmonic excitations, Fi and oi

represent the forcing amplitude and forcing frequency of the ith harmonic, respectively, and j
denotes the imaginary unit. Using the assumed-modes method [17], the physical deflection of the
structure at a point x is simply

wðx; tÞ ¼
XN

i¼1

uiðxÞZiðtÞ, (2)

where uiðxÞ are the eigenfunctions of the unconstrained structure (i.e., the structure without any
attachments) that serve as the basis functions for this approximate solution, ZiðtÞ are the
corresponding generalized coordinates, and N is the number of modes used in the assumed-modes
expansion. The total kinetic energy of the combined system is

T ¼
1

2

XN

i¼1

Mi _Z2i ðtÞ þ
1

2

XS

i¼1

mi _z
2
i ðtÞ, (3)

where Mi are the generalized masses, mi is the mass of the ith oscillator, ziðtÞ is its displacement, S
is the total number of oscillators that are attached to the structure, and an overdot denotes a
derivative with respect to time. The total potential energy is

V ¼
1

2

XN

i¼1

KiZ2i ðtÞ þ
1

2

XS

i¼1

ki ziðtÞ � wðxa; tÞ½ �
2, (4)
k2 kS

m2 mS

k1

m1
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Fig. 1. An arbitrarily supported elastic structure that is subjected to a localized force and carrying a set of sprung

masses.
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where Ki are the generalized spring constants, ki is the spring stiffness of the ith oscillator, xa

represents the attachment location of the oscillators, and wðxa; tÞ represents the lateral
displacement of the beam at xa.
Applying Lagrange’s equations, the equations of motion for the system are given by

½M� ½0�

½0�T ½m�

" #
€g

€z

� �
þ
½K� ½R�

½R�T ½k�

" #
g

z

� �
¼

f ðtÞuðxf Þ

0

� �
, (5)

where g ¼ ½Z1 Z2 . . . ZN �
T is the vector of generalized coordinates and z ¼ ½z1 z2 . . . zS�

T is the
vector of mass displacements. The S � S matrices ½m� and ½k� are

½m� ¼ diag ½mi � ; ½k� ¼ diag ½ ki �. (6)

The N �N matrices ½M� and ½K� are

½M� ¼ ½Md � ; ½K� ¼ ½Kd � þ
XS

i¼1

kiuðxaÞu
TðxaÞ, (7)

where ½Md � and ½Kd � are both diagonal matrices whose ith elements are Mi and Ki, respectively.
Vector uðxaÞ is defined as

uðxaÞ ¼ ½u1ðxaÞ u2ðxaÞ . . . uNðxaÞ�
T, (8)

and the N � S matrices ½R� and ½0� are given by

½R� ¼ ½�k1uðxaÞ . . . � kiuðxaÞ . . . � kSuðxaÞ � ; ½0� ¼ ½ 0 0 0 . . . 0 �. (9)

Because the system is linear, superposition can be applied. Thus, the total steady-state response
of the system to a given number of distinct harmonic excitations can be obtained separately and
then combined to obtain the aggregate response. To this end, one can consider a general harmonic
input of the form

f ðtÞ ¼ Fejot. (10)

The system will execute a simple harmonic motion with the same response frequency as the
driving frequency,

ZiðtÞ ¼ Z̄i e
jot ; ziðtÞ ¼ z̄i e

jot. (11)

Therefore, vectors ḡ ¼ ½Z̄1 Z̄2 . . . Z̄N �
T and z̄ ¼ ½z̄1 z̄2 . . . z̄S�

T correspond to the solution of the
following matrix equation

½K� � o2½M� ½R�

½R�T ½k� � o2½m�

" #
ḡ

z̄

� �
¼

Fuðxf Þ

0

� �
. (12)

Incidentally, by setting the right-hand side of Eq. (12) to zero, one obtains

½K� ½R�

½R�T ½k�

" #
ḡ

z̄

� �
¼ o2

½M� ½0�

½0�T ½m�

" #
ḡ

z̄

� �
, (13)

which corresponds to the generalized eigenvalue problem for a linear structure carrying S
oscillators. In Eq. (13), o denotes the natural frequency of the combined system.
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While Eq. (12) is expressed in terms of the generalized coordinates ḡ and the mass amplitudes z̄,
it can be easily manipulated to depend only on ḡ. The last S equations of Eq. (12) yield

�kiu
TðxaÞḡþ ðki � o2miÞz̄i ¼ 0 ; i ¼ 1; . . . ;S. (14)

Eq. (12) also gives

½K� � o2½M�
� �

ḡ�
XS

i¼1

kiuðxaÞz̄i ¼ Fuðxf Þ. (15)

Solving for z̄i by using Eq. (14) and substituting the resulting expression into Eq. (15) leads to

½Kd � þ auðxaÞu
TðxaÞ � o2½Md �

� �
ḡ ¼ Fuðxf Þ, (16)

where

a ¼
XS

i¼1

kimio2

mio2 � ki

. (17)

Note that the coefficient matrix of ḡ is simply the sum of a diagonal matrix and a rank one matrix.
Assuming that the excitation frequency does not coincide with any natural frequencies of the

modified system, i.e., the linear structure carrying the chain of oscillators, the coefficient matrix of
Eq. (16) can be inverted to give

ḡ ¼ ½Kd � þ auðxaÞu
TðxaÞ � o2½Md �

� ��1
Fuðxf Þ. (18)

To induce a node at xn requires that

wðxn; tÞ ¼
XN

i¼1

uiðxnÞZiðtÞ ¼ uTðxnÞg ¼ uTðxnÞḡ ejot ¼ 0. (19)

Combining Eqs. (18) and (19), one gets

uTðxnÞ ½K
d � þ auðxaÞu

TðxaÞ � o2½Md �
� ��1

Fuðxf Þ ¼ 0. (20)

Because the second term of Eq. (20) consists of a diagonal matrix modified by a rank one
matrix, its inverse can be readily obtained by applying the Sherman–Morrison formula [18].
Expanding the triple product of Eq. (20) yields

c1 �
a

1þ c3a
c2 ¼ 0 , (21)

where

c1 ¼
XN

i¼1

uiðxnÞuiðxf Þ

Ki �Mio2
, (22)

c2 ¼
XN

i¼1

XN

j¼1

uiðxaÞujðxaÞuiðxnÞujðxf Þ

ðKi �Mio2ÞðKj �Mjo2Þ
, (23)
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and

c3 ¼
XN

i¼1

u2
i ðxaÞ

Ki �Mio2
. (24)

Eqs. (20) and (21) are mathematically identical. Eq. (21), however, is clearly more efficient,
because it does not require one to perform the computationally taxing operation of inverting an
N �N matrix.
The required oscillator parameters to impose a node when the structure is driven by multiple

harmonics are obtained numerically. Eq. (21) depends on xn, xa, xf , mi, ki and o. It can be
conveniently expressed in terms of these dependent variables as

f ðxa;xf ;xn;m; k;oÞ ¼ 0, (25)

where m and k are the vector of oscillator masses and stiffnesses, respectively. In application, it is
always possible to attach more oscillators than there are excitation frequencies, i.e., S4p.
However, it is clearly more efficient to use the fewest number of sprung masses possible. Thus, for
p excitation frequencies, S ¼ p oscillators are attached at xa of the linear structure to induce a
node at xn, and Eq. (25) leads to a set of p equations, one for each oi, of the following form

f iðxa; xf ; xn;m;k;oiÞ ¼ 0; i ¼ 1; . . . ; p. (26)

Assuming that the stiffness parameters ki are all specified, Eq. (26) yields a set of p nonlinear
algebraic equations that must be solved simultaneously for the p masses mi.
The MATLAB routine fsolve is utilized in this paper to obtain the solution of a system of

nonlinear algebraic equations using a quasi-Newton method. To execute fsolve, a set of initial
guesses must be provided for the unknowns. For these initial guesses, if fsolve does not converge
to a solution, then fsolve is executed again with a different set of starting values until a solution is
obtained. Mathematically, if the set of equations given by Eq. (26) returns any mass value that is
negative, then a node cannot be enforced at the desired location for the given set of oi, ki, xa and
xf . In this case, one has the option to change either the oscillator stiffnesses, ki, or the attachment
location, xa, to obtain physically meaningful, i.e., positive, values of mi so that a node at xn can be
induced for the given xf and oi. The proposed technique of solving for the masses in order to
impose a node at xn is very robust. In all of the numerical experiments considered, fsolve

successfully converged to a set of theoretically feasible solutions.
For multiple harmonics, the input is given by Eq. (1). Because the structure under consideration

is assumed to be linear, superposition is valid and one can consider each input individually.
For each harmonic excitation with frequency, or, the deformed shape of the structure can be
expressed as

wrðx; tÞ ¼
XN

i¼1

uiðxÞZr
i ðtÞ ¼ frðxÞe

jort, (27)

where Zr
i ðtÞ denotes the generalized coordinates due to a harmonic input of Fre

jort, and frðxÞ

represents the resulting deflection shape of the beam. Thus, by virtual of superposition, the total
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response of the structure is given by

wðx; tÞ ¼
Xp

r¼1

frðxÞe
jort. (28)

3. Results

In the subsequent examples, all of the oscillator stiffnesses will be specified, and all of the
excitation frequencies are arbitrary but distinct from the natural frequencies of the combined
system, which consists of the elastic structure carrying the set of oscillators. Moreover, to ensure
the convergence for all of the numerical results, the number of modes used in the expansion is
taken to be N ¼ 10. Finally, because the assumed-modes method is used to formulate the
equations of motion, the proposed procedures can be easily implemented to enforce a node for
any arbitrarily supported structure undergoing multiple harmonic excitations. Without any loss of
generality, a simply supported and a fixed-free uniform Euler–Bernoulli beam will be considered.
For a uniform simply supported Euler–Bernoulli beam, its normalized (with respect to the mass

per unit length, r, of the beam) eigenfunctions are given by

uiðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

ipx

L

� �
, (29)

such that the generalized masses and stiffnesses of the beam become

Mi ¼ 1 and Ki ¼ ðipÞ
4EI=ðrL4Þ, (30)

where E is the Young’s modulus, I is the moment of inertia of the cross-section of the beam. For a
uniform fixed-free Euler–Bernoulli beam, its normalized eigenfunctions are

uiðxÞ ¼
1ffiffiffiffiffiffi
rL
p cos bix� cosh bixþ

sin biL� sinh biL

cos biLþ cosh biL
ðsin bix� sinh bixÞ

� �
, (31)

such that the generalized masses and stiffnesses of the beam are

Mi ¼ 1 and Ki ¼ ðbiLÞ
4EI=ðrL4Þ, (32)
Table 1

The first five natural frequencies of a uniform simply supported and a uniform fixed-free beam

Natural frequency Simply supported Fixed-free

o01 9.86960E+00 3.51602E+00

o02 3.94784E+01 2.20345E+01

o03 8.88264E+01 6.16972E+01

o04 1.57914E+02 1.20902E+02

o05 2.46740E+02 1.99860E+02

The natural frequencies, o0i, of the combined system are non-dimensionalized by dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.
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where biL satisfies the following transcendental equation

cos biL cosh biL ¼ �1. (33)

Table 1 lists the first five natural frequencies of a uniform simply supported and a uniform fixed-
free Euler–Bernoulli beam.
Two cases will be considered in detail. In the first case, the attachment and the node locations

coincide. This will be referred to as the collocated case. In the second case, the attachment and the
node locations are distinct, otherwise known as the non-collocated case. In application, the
procedure outlined in the previous section can be used to determine the mass parameters in order
to induce a node at xn, regardless if the attachment and node locations are collocated or non-
collocated. However, as will be shown shortly, when the attachment and the node locations are
collocated, then the procedure to find the required oscillator parameters becomes trivial.
Eq. (26) will be used to find the required masses in order to impose a node at xn for multiple

harmonic excitations. To validate the results of the assumed modes method and the mass parameters
of Eq. (26), a finite element model of the beam carrying sprung masses is constructed, where the
stiffnesses of the oscillators correspond the specified values, and the masses of the oscillators are given
by the solutions of Eq. (26). The finite element model will also be subjected to the same localized
input consisting of multiple harmonics. In all of the subsequent examples, the deformed shapes of the
beam for each harmonic excitation, the natural frequencies of the structure carrying oscillators, and
the mass amplitudes will be determined using both the assumed modes and the finite element method.
In using the latter approach, the beam is discretized into 100 finite elements of equal length.

3.1. Collocated case: one node

Consider the case where the attachment and the node locations coincide, xa ¼ xn. For this
collocated case, if

ki ¼ mio2
i i ¼ 1; . . . ; p, (34)

then Eq. (14) reduces to

�kiu
TðxaÞḡ ¼ �kiu

TðxnÞḡ ¼ 0; i ¼ 1; . . . ; p, (35)

which clearly satisfies Eq. (19). Thus, to induce a node at the attachment location, the natural
frequencies of the grounded oscillators must be identical to the excitation frequencies. If the
stiffnesses of the oscillators are specified, the required masses are found directly from Eq. (34).
Once the oscillator parameters are properly tuned based on the excitation frequencies, the
attachment location of the oscillators, regardless of its position along the structure, becomes a
node. Incidentally, the selection of the sprung masses is not unique. The actual choice is governed
by the tolerable vibration amplitudes of the oscillator masses.
Attaching oscillators to any linear structure changes the natural frequencies of the system.

Because the oscillator parameters are tuned so that the grounded natural frequency of each
oscillator matches one of the excitation frequencies exactly (see Eq. (34)), some of the natural
frequencies of the combined assembly (the beam carrying the oscillator attachments) may be
close, but will never be identical, to the driving frequencies. This, however, generally presents no
problem because the new natural frequencies differ from the operating frequencies.
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Fig. 2. The normalized steady-state deformed shape of a uniform simply supported Euler–Bernoulli beam with (solid

line) and without (dotted line) an oscillator attachment. The horizontal line represents the configuration of the

undeformed beam. The system parameters are k1 ¼ k2 ¼ 5EI=L3, m1 ¼ 1:73010� 10�2rL and m2 ¼ 2:70416� 10�3rL.

The attachment and node locations are collocated, xa ¼ xn ¼ 0:65L. The excitation frequencies are o1 ¼ 17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
,

o2 ¼ 43

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing location is xf ¼ 0:27L.
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Consider a uniform simply supported Euler–Bernoulli beam of length L, subjected to a
localized force at xf ¼ 0:27L of the form

f ðtÞ ¼ F1e
jo1t þ F2e

jo2t, (36)

where o1 ¼ 17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 43

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. Comparing with the results of Table 1, note

that the excitation frequencies are distinct from the natural frequencies of the simply supported
beam. For a given application, the attachment and the desired node locations are collocated, i.e.,
xa ¼ xn ¼ 0:65L. Two oscillators are attached to the beam at xa, and the stiffness parameters are
chosen to be k1 ¼ k2 ¼ 5EI=L3. To induce a node at the attachment location, one simply requires
mi ¼ ki=o2

i , or m1 ¼ 1:73010� 10�2rL and m2 ¼ 2:70416� 10�3rL. Fig. 2 shows the normalized
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steady-state deformed shape of the beam, frðx=LÞ=ðFr=ðEI=L3ÞÞ, due to Fre
jort. The solid curve

corresponds to the deformed shape of the beam with two oscillators attached at xa ¼ 0:65L. The
dotted line corresponds to the deformed shape of the beam without the oscillators, and the
horizontal line represents the undeformed configuration of the beam. The total steady-state
response of the beam is given by Eq. (28). For a single harmonic excitation, the amplitude of the
beam’s deformation changes but the beam’s deformed shape remains the same as time evolves.
For an input consisting of multiple harmonics with distinct excitation frequencies, the resulting
amplitude and the deformed shape both vary with time. Nevertheless, by attaching oscillators
with properly chosen system parameters, its attachment location, xa ¼ 0:65L, can be made to
always remain stationary. Note also that by attaching two oscillators of the appropriate
parameters at xa ¼ 0:65L, the beam in the region between 0:65Lpxp1:00L experiences much
smaller vibration compared to the beam without sprung masses.
To validate the results, a finite element model of the beam carrying two oscillators is developed.

The deformed shapes of the finite element beam model are identical to those of Fig. 2 and they will
not be shown. Table 2 compares the natural frequencies of the combined system (the beam
carrying the two oscillators), obtained by using the assumed modes and the finite element method.
Note the excellent agreement between the two approaches. From Table 2, observe that the
excitation frequencies are now near the second and fourth natural frequencies of the combined
system.
Table 3 compares the mass amplitudes for each harmonic excitation. Note again how well they

track one another. Because the first oscillator is tuned to o1, it alone can be used to induce a node
at the attachment location when the beam is being excited by a single harmonic with frequency o1.
Thus, when the input consists of F1e

jo1t, the second oscillator remains completely stationary, and
the results of Table 3 are consistent with our physical understanding of the problem. Incidentally,
in all of the subsequent examples, the assumed modes and the finite element results agree very
well. Thus, unless otherwise stated, the deformed shapes, natural frequencies and mass amplitudes
obtained by using the finite element method will not be shown for the sake of brevity.
Because the mass parameters are obtained by using mi ¼ ki=o2

i , they are certainly not unique.
In application, another important design specification is governed by the vibration of the absorber
masses. For the previous example, if the mass amplitudes are deemed too large, one can simply
Table 2

The first six natural frequencies of a uniform simply supported Euler-Bernoulli beam carrying two undamped

oscillators, of stiffnesses k1 ¼ k2 ¼ 5EI=L3 and masses m1 ¼ 1:73010� 10�2rL and m2 ¼ 2:70416� 10�3rL, at xa ¼

0:65L

Natural frequency Assumed modes ðN ¼ 10Þ Finite element ðN ¼ 100Þ

o01 9.65390E+00 9.65390E+00

o02 1.72914E+01 1.72913E+01

o03 3.91795E+01 3.91795E+01

o04 4.35249E+01 4.35246E+01

o05 8.88297E+01 8.88297E+01

o06 1.57974E+02 1.57974E+02

The natural frequencies, o0i, of the combined system are non-dimensionalized by dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.
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Table 3

The mass amplitudes for the beam and oscillators of Table 2

Mass amplitudes Assumed modes ðN ¼ 10Þ Finite element ðN ¼ 100Þ

z1 (for o1) �2.31255E�01 �2.31342E�01

z2 (for o1) �5.92553E�14 �5.92763E�14

z1 (for o2) 4.50650E�14 4.50848E–14

z2 (for o2) 1.78868E�01 1.78948E–01

The beam is subjected to a localized force at xf ¼ 0:27L that consists of two harmonics with frequencies o1 ¼

17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 43

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. The mass amplitudes are normalized by dividing by Fr=ðEI=L3Þ, where Fr

denotes the forcing amplitude of the rth harmonic.

Table 4

The first six natural frequencies of a uniform simply supported Euler-Bernoulli beam carrying two undamped

oscillators, of stiffnesses k1 ¼ k2 ¼ 20EI=L3 and masses m1 ¼ 6:92041� 10�2rL and m2 ¼ 1:08167� 10�2rL, at xa ¼

0:65L

Natural frequency Assumed modes ðN ¼ 10Þ Finite element ðN ¼ 100Þ

o01 9.11010E+00 9.11009E+00

o02 1.80487E+01 1.80482E+01

o03 3.85681E+01 3.85680E+01

o04 4.48111E+01 4.48100E+01

o05 8.88395E+01 8.88395E+01

o06 1.58154E+02 1.58154E+02

The natural frequencies, o0i, of the combined system are non-dimensionalized by dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.

Table 5

The mass amplitudes for the beam and oscillators of Table 4

Mass amplitudes Assumed modes ðN ¼ 10Þ Finite element ðN ¼ 100Þ

z1 (for o1) �5.78136E–02 �5.78355E–02

z2 (for o1) �4.90571E–15 �4.90694E–15

z1 (for o2) 3.60698E–15 3.60824E–15

z2 (for o2) 4.47170E�02 4.47369E�02

The beam is subjected to a localized force at xf ¼ 0:27L that consists of two harmonics with frequencies o1 ¼

17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 43

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. The mass amplitudes are normalized by dividing by Fr=ðEI=L3Þ, where Fr

denotes the forcing amplitude of the rth harmonic.

P.D. Cha, G. Ren / Journal of Sound and Vibration 290 (2006) 425–447 435



ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.03

−0.02

−0.01

0

0.01

0.02

φ 1(x
/L

)/
( 

F
1/(

E
I/L

3 ) 
) 

φ 2(x
/L

)/
( 

F
2/(

E
I/L

3 ) 
) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2
x 10−3

x/L

Fig. 3. The normalized steady-state deformed shape of a uniform fixed-free Euler–Bernoulli beam with (solid line) and

without (dotted line) an oscillator attachment. The system parameters are k1 ¼ k2 ¼ 7EI=L3, m1 ¼ 4:86111� 10�2rL

and m2 ¼ 7:28408� 10�3rL. The attachment and node locations are collocated, xa ¼ xn ¼ 1:00L. The excitation

frequencies are o1 ¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, o2 ¼ 31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing location is xf ¼ 0:85L.
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increase the spring stiffnesses to lower these amplitudes to within an acceptable level. Changing
the spring stiffnesses will not alter the deformed shape of the beam, as long as they satisfy
mi ¼ ki=o2

i . They will, however, change the natural frequencies of the combined system and the
amplitudes of the sprung masses. Table 4 and Table 5 show the natural frequencies and mass
amplitudes for the case of k1 ¼ k2 ¼ 20EI=L3. As expected, by increasing the stiffness parameters,
the absorber amplitudes decrease. Note that the excitation frequencies are in the vicinity of the
second and fourth natural frequencies of the combined assembly.
Consider a fixed-free beam that is subjected to a localized input at xf ¼ 0:85L, which consists of

two harmonics with frequencies o1 ¼ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. A node is desired at

xn ¼ 1:00L, and it coincides with the attachment location. For k1 ¼ k2 ¼ 7EI=L3, the required

mass parameters are m1 ¼ 4:86111� 10�2rL and m2 ¼ 7:28408� 10�3rL. Fig. 3 shows the
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normalized steady-state deformed shape of the beam, frðx=LÞ=ðFr=ðEI=L3ÞÞ, due to Fre
jort.

Without any attachments, the maximum displacement of the beam occurs at its free end. By
attaching properly tuned oscillators to the beam, even though the beam is cantilevered, a node is
induced at the beam’s tip without using any rigid supports. Interestingly, the deformed shapes of
the fixed-free beam with attachments resemble those for a fixed-simply supported beam.
Consider a beam that is subjected to an input with two harmonics that are closely spaced, i.e.,

o1 � o2. If a node is induced at xn for o1 and o2, that particular location may remain nearly
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Fig. 4. The steady-state deformed shapes of a uniform fixed-free Euler–Bernoulli beam with (solid line) and without

(dotted line) oscillator attachments. (a) The system parameters are k1 ¼ 120EI=L3, k2 ¼ 180EI=L3, m1 ¼ 1:24870�

10�1rL and m2 ¼ 1:75781� 10�1rL. The attachment and node locations are collocated, xa ¼ xn ¼ 1:00L. The

excitation frequencies are o1 ¼ 31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, o2 ¼ 32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing location is xf ¼ 0:76L. (b) The

system parameters, attachment, node and forcing locations are identical to those of (a). The new excitation frequencies

are now onew
1 ¼ 31:25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, onew

2 ¼ 31:50
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and onew

3 ¼ 31:75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.
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Fig. 4. (Continued)
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stationary for excitation frequencies in the range of o1popo2, because a slight perturbation in
the excitation frequency often only leads to a slight perturbation in the system response. Consider

a fixed-free beam subjected to a localized input at xf ¼ 0:76L, where o1 ¼ 31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and

o2 ¼ 32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. For xa ¼ xn ¼ 1:00L, two oscillators are attached to the beam, with

k1 ¼ 120EI=L3, k2 ¼ 180EI=L3, m1 ¼ 1:24870� 10�1rL and m2 ¼ 1:75781� 10�1rL. The
oscillator parameters are tuned to o1 and o2. Fig. 4(a) shows the steady-state deformed shape

of the beam due to Fre
jort, and Fig. 4(b) illustrates the deformed shape of the beam due to a

harmonic input with new frequencies of onew
1 ¼ 31:25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, onew

2 ¼ 31:50
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and
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onew
3 ¼ 31:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, respectively. Note that even though the excitation frequencies have

changed, the absorbers, originally tuned to o1 and o2, still result in very small amplitudes for the
beam at x ¼ 1:0L for frequencies between o1 and o2. This has practical benefits because it allows
us to impose a point of nearly zero displacement for a harmonic input whose excitation frequency
has the tendency to drift.

3.2. non-collocated case, one node

Consider a simply supported beam with a concentrated force applied at xf ¼ 0:76L. The

localized force consists of two harmonics, with forcing frequencies of o1 ¼ 33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and

o2 ¼ 49

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. For a given application, it is desired to have a node at xn ¼ 0:80L. However,

due to space constraint, oscillators cannot be attached at that location but at some other point,
say xa ¼ 0:23L. In this case, Eq. (26) can be used to obtained the required mass parameters in
order to induce a node, assuming that all the stiffness parameters are specified. For
k1 ¼ k2 ¼ 25EI=L3, solving Eq. (26) using fsolve gives m1 ¼ 2:46948� 10�2rL and
m2 ¼ 1:05129� 10�2rL. Fig. 5 illustrates the steady-state deformed shape of the beam. Note
that a node is imposed at 0:80L as desired, and that for the given set of system parameters, the
beam in the region between 0:80Loxo1:00L experiences much smaller vibration compared to the
beam with no oscillator attachments.
Consider a fixed-free beam with a concentrated force applied at xf ¼ 0:90L. The localized force

consists of two harmonics with frequencies of o1 ¼ 13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 41

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. A

node is desired at xn ¼ 1:00L, and the attachment location is at xa ¼ 0:75L. The oscillator

stiffnesses are k1 ¼ k2 ¼ 18EI=L3, and the mass parameters are found by solving Eq. (26), which

yields m1 ¼ 9:09231� 10�2rL and m2 ¼ 1:05890� 10�2rL. Fig. 6 shows the steady-state shape of
the deformed beam. Note that for the beam with oscillators, a node is induced at the tip, while for
the beam without any attachments, its tip experiences large deflection.

3.3. Collocated, multiple nodes

Suppose one wishes to impose multiple, say q, nodes, for a linear structure that is subjected to
an input consisting of p harmonics. This can be achieved by attaching q sets of p oscillators to the
structure at distinct locations, as shown in Fig. 7. If the attachment and node locations are
collocated, one can easily show that to induce nodes at xi

a ¼ xi
n, for i ¼ 1; . . . ; q, one simply tunes

each oscillator natural frequency at xi
a to a particular excitation frequency.

Consider a simply supported beam that is forced with an input at xf ¼ 0:71L, which consists of

two harmonics with frequencies o1 ¼ 13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 41

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. Two nodes are

desired at x1
n ¼ 0:24L and x2

n ¼ 0:26L, and the attachment and node locations are collocated. A

total of four oscillators are attached to the beam, two at x1
a ¼ x1

n and two at x2
a ¼ x2

n. For

simplicity, let the oscillators all have stiffnesses ki ¼ 18EI=L3 ¼ k. Assume the oscillators with

masses m1 and m2 are attached at x1
a, and the absorbers with masses m3 and m4 are attached at x2

a.
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Fig. 5. The normalized steady-state deformed shape of a uniform simply supported Euler–Bernoulli beam with (solid

line) and without (dotted line) an oscillator attachment. The system parameters are k1 ¼ k2 ¼ 25EI=L3, m1 ¼

2:46948� 10�2rL and m2 ¼ 1:05129� 10�2rL. The attachment and node locations are non-collocated, xa ¼ 0:23L and

xn ¼ 0:80L. The excitation frequencies are o1 ¼ 33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, o2 ¼ 49

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing location is

xf ¼ 0:76L.
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The masses are selected such that m1 ¼ m3 ¼ k=o2
1 and m2 ¼ m4 ¼ k=o2

2. Physically, the first and

third oscillators are tuned to impose nodes at x1
a and x2

a for the first excitation frequency, and the

second and fourth are tuned to impose nodes at x1
a and x2

a for the second excitation frequency.

Together, each set of oscillators will induce a node at the attachment location for o1 and o2.
Fig. 8 shows the deformed shape of the beam for each harmonic. By imposing nodes that are
closely spaced, it is possible to induce a region of nearly zero vibration. For this particular
example, by enforcing nodes at 0:24L and 0:26L, the vibration of the combined system is nearly
quenched within the region between 0 and 0:3L.
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Fig. 6. The normalized steady-state deformed shape of a uniform fixed-free Euler–Bernoulli beam with (solid line) and

without (dotted line) an oscillator attachment. The system parameters are k1 ¼ k2 ¼ 18EI=L3, m1 ¼ 9:09231� 10�2rL

and m2 ¼ 1:05890� 10�2rL. The attachment and node locations are non-collocated, xa ¼ 0:75L and xn ¼ 1:00L. The

excitation frequencies are o1 ¼ 13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, o2 ¼ 41

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing location is xf ¼ 0:90L.
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3.4. Non-collocated, multiple nodes

Consider now the most interesting and challenging case of imposing q nodes at ðxi
nÞi¼1;...;q, where

the node and attachment locations, ðxi
aÞi¼1;...;q, are not collocated, when the linear structure is

subjected to p harmonics. To impose nodes at q locations for each harmonic, q absorbers are
needed. Thus, a total of pq oscillators will be attached to the structure. Assume that the first p
oscillators, with parameters ðmi; kiÞi¼1;...;p, are attached at x1

a, and the next p oscillators, with
parameters ðmi; kiÞi¼pþ1;...;2p, are attached at x2

a, etc. After some algebra, one can show that for this
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general case, Eq. (16) becomes

½Kd � þ
Xq

i¼1
aiuðx

i
aÞu

Tðxi
aÞ � o2½Md �

� 	
ḡ ¼ Fuðxf Þ, (37)

where

ar ¼
Xrp

i¼ðr�1Þpþ1

kimio2

mio2 � ki

; r ¼ 1 . . . ; q. (38)

To impose nodes at multiple locations, Eq. (20) becomes, not surprisingly, substantially more
complicated as follows

uTðxr
nÞ ½K

d � þ
Xq

i¼1

aiuðx
i
aÞu

Tðxi
aÞ � o2½Md �

 !�1
Fuðxf Þ ¼ 0 ; r ¼ 1 . . . ; q. (39)

Eq. (39) leads to a total of q equations for each excitation frequency. In order to induce q nodes
when the input consists of p harmonics, a total of pq equations need to solved simultaneously for
the desired masses, mi, where i ¼ 1; :::; pq.
Eq. (39) requires one to invert an N �N matrix. Because fsolve finds the solution to a system of

nonlinear equations iteratively, for large values of N, solving Eq. (39) directly may be
computationally taxing. Fortunately, the terms inside the parenthesis can be expressed as

½Kd � þ
Xq

i¼1

aiuðx
i
aÞu

Tðxi
aÞ � o2½Md � ¼ ½A� þ ½V �½V �T, (40)

where

½A� ¼ ½Kd � � o2½Md � and ½V � ¼ ½U �½D�. (41)

Matrix ½U � is given by

½U � ¼ ½ uðx1
aÞ uðx

2
aÞ . . . uðxi

aÞ . . . uðxq
aÞ �, (42)
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Fig. 8. The normalized steady-state deformed shape of a uniform simply supported Euler–Bernoulli beam with (solid

line) and without (dotted line) an oscillator attachment. The system parameters are ki ¼ 18EI=L3 ¼ k, m1 ¼ m3 ¼

1:06509� 10�1rL and m2 ¼ m4 ¼ 1:07079� 10�2rL. The attachment and node locations are collocated, x1
a ¼ x1

n ¼

0:24L and x2
a ¼ x2

n ¼ 0:26L. The excitation frequencies are o1 ¼ 13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, o2 ¼ 41

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing

location is xf ¼ 0:71L.
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and matrix ½D� is diagonal whose elements are the square roots of ai,

½D� ¼ diag ½
ffiffiffiffi
ai

p
�. (43)

Matrices ½U �, ½D� and ½V � are of sizes ðN � qÞ, ðq� qÞ and ðN � qÞ, respectively. Eq. (40) can be
inverted using the Sherman–Morrison formula [18] as follows:

½A� þ ½V �½V �T
� ��1

¼ ½A��1 � ½A��1½V � ½I � þ ½V �T½A��1½V �
� ��1

½V �T½A��1. (44)

Because ½A� is diagonal, its inverse is trivial to obtain. Moreover, the resulting matrix inside the
parenthesis is now of size q� q. For qooN, it is clearly more efficient to invert the right-hand
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side than the left-hand side of Eq. (40). Thus, Eq. (39) is rewritten as

uTðxr
nÞ ½A�

�1 � ½A��1½V � ½I � þ ½V �T½A��1½V �
� ��1

½V �T½A��1
n o

Fuðxf Þ ¼ 0 ; r ¼ 1 . . . ; q (45)

and this equation will be used to solve for the required masses mi in order to induce q nodes for p
harmonics.
Consider a cantilever beam with a localized force applied at xf ¼ 0:75L. The external force

consists of two harmonics with frequencies of o1 ¼ 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 55

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.

Compared with the results of Table 1, note that the excitation frequencies are distinct from the

natural frequencies of a fixed-free beam. Nodes are desired at x1
n ¼ 0:65L and x2

n ¼ 1:00L. Because
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Fig. 9. The normalized steady-state deformed shape of a uniform fixed-free Euler–Bernoulli beam with (solid line) and

without (dotted line) an oscillator attachment. The system parameters are k1 ¼ k3 ¼ 20EI=L3, k2 ¼ k4 ¼ 35EI=L3,

m1 ¼ 3:77780� 10�2rL, m2 ¼ 1:15596� 10�2rL, m3 ¼ 3:78452� 10�2rL and m4 ¼ 1:15849� 10�2rL. The attach-

ment and node locations are non-collocated, x1
a ¼ 0:81L, x2

a ¼ 0:83L, x1
n ¼ 0:65L and x2

n ¼ 1:00L. The excitation

frequencies are o1 ¼ 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, o2 ¼ 55

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
, and the forcing location is xf ¼ 0:75L.
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of space constraint, two sets of oscillators, each consisting of two absorbers, are attached at
x1

a ¼ 0:81L and x2
a ¼ 0:83L. The stiffnesses are specified to be k1 ¼ k3 ¼ 20EI=L3 and

k2 ¼ k4 ¼ 35EI=L3. Solving Eq. (45) simultaneously using fsolve yields m1 ¼ 3:77780� 10�2rL,
m2 ¼ 1:15596� 10�2rL, m3 ¼ 3:78452� 10�2rL and m4 ¼ 1:15849� 10�2rL. The normalized
steady-state deformation of the beam, frðxÞ=ðFr=ðEI=L3ÞÞ, due to Fre

jort is shown in Fig. 9
Observe that nodes are induced at the desired locations at 0:65L and 1:00L nodes. Moreover, note
that the vibration level of the entire beam is dramatically reduced compared to the beam without
any attachments. Thus, by attaching properly tuned oscillators to the cantilever beam, one can
induce nodes at the desired locations and substantially quench the vibration of the entire structure
without using any rigid supports.
A finite element model is constructed to validate the aforementioned example. The beam is

discretized into 100 equal beam elements, and sprung masses are attached at x1
a and x2

a. The
stiffnesses of the absorbers are identical to those listed above, and the mass parameters correspond
to those obtained by solving Eq. (45). Table 6 compares the natural frequencies of the combined
system, obtained by using the assumed modes and the finite element method. Note the excellent
agreement between the two sets of results. Interestingly, the third and sixth natural frequencies of
the combined system are close but not identical to the excitation frequencies. Table 7 shows the
amplitudes of the absorber masses. Again, note how well the results track one another.
Finally, a few words about determining the mass parameters for the non-collocated case are

warranted. The MATLAB routine fsolve is used to obtain the desired mass parameters in order to
induce a node at the specified location. In application, fsolve requires a set of initial guesses of the
unknown parameters to be provided. Numerical experiments showed that when the attachment
and node locations are non-collocated, one can use the mass parameters for the collocated case as
initial guesses, and in all the examples consider, fsolve converges to a set of theoretically feasible
solution. Not surprisingly, as the number of harmonics, p, and node locations, q, increases, the
problem becomes more computationally intensive because a total of pq nonlinear algebraic
equations must be satisfied simultaneously.
Using the assumed modes method, a simple and efficient approach has been developed to solve

the inverse problem of imposing one or multiple nodes anywhere along an arbitrarily supported
Table 6

The first six natural frequencies of a uniform cantilever Euler-Bernoulli beam carrying four undamped oscillators, of

stiffnesses k1 ¼ k3 ¼ 20EI=L3, k2 ¼ k4 ¼ 35EI=L3, and masses m1 ¼ 3:77780� 10�2rL, m2 ¼ 1:15596� 10�2rL, m3 ¼

3:78452� 10�2rL and m4 ¼ 1:15849� 10�2rL

Natural frequency Assumed modes ðN ¼ 10Þ Finite element ðN ¼ 100Þ

o01 3.17345E+00 3.17345E+00

o02 2.16855E+01 2.16854E+01

o03 2.30404E+01 2.30401E+01

o04 2.50124E+01 2.50113E+01

o05 5.48986E+01 5.48972E+01

o06 5.53695E+02 5.53651E+02

The first two oscillators are attached at x1
a ¼ 0:81L, and the last two oscillators are attached at x2

a ¼ 0:83L. The natural

frequencies, o0i, of the combined system are non-dimensionalized by dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
.



ARTICLE IN PRESS

Table 7

The mass amplitudes for the beam and oscillators of Table 6

Mass amplitudes Assumed modes ðN ¼ 10Þ Finite element ðN ¼ 100Þ

z1 (for o1) �1.89639E–01 �1.91073E–01

z2 (for o1) �1.77139E–04 �1.78479E–04

z3 (for o1) 1.40241E–01 1.41359E–01

z4 (for o1) �1.71029E–04 �1.72393E–04

z1 (for o2) 1.83714E–05 1.80793E–05

z2 (for o2) �9.40288E–02 �9.25335E–02

z3 (for o2) 1.80946E–05 1.78757E–05

z4 (for o2) 6.77194E–02 6.69000E–02

The beam is subjected to a localized force at xf ¼ 0:75L that consists of two harmonics with frequencies o1 ¼

23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
and o2 ¼ 55

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
. The mass amplitudes are normalized by dividing by Fr=ðEI=L3Þ, where Fr

denotes the forcing amplitude of the rth harmonic.
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elastic structure that is subjected to a localized force consisting of multiple harmonic excitations.
This has practical benefits because it allows any point along the structure to remain stationary
without using any rigid supports, and it enables certain regions of the structure to undergo very
small deflections, thereby suppressing vibration in those sections. Finally, the mass parameters
obtained by using fsolve are generally not unique. Thus, multiple sets of theoretically feasible
solutions are possible. In application, another important design specification is governed by the
vibration of the absorber masses. If the vibration amplitudes of these masses are large, then the
stiffnesses can be increased to reduce the mass displacements. If the deflections of the absorber
masses are still too large, then theoretically feasible solutions would not be practical, and it would
be necessary to introduce dampers to the vibration absorbers. This interesting problem of
imposing the additional constraint of maximum vibration amplitude of the masses will be pursued
in a future research project.
4. Conclusions

Oscillators can be used to impose one or multiple nodes anywhere along an elastic structure
that is subjected to a localized force consisting of multiple harmonic excitations. When the
parameters of the sprung masses are properly chosen, one or more nodes can always be induced at
the attachment locations for an input with multiple harmonics and for any excitation location.
When the attachment and the node locations are not collocated, it is only possible to induce nodes
at certain locations along the structure. In addition, if a node is specified for two excitation
frequencies o1 and o2 that are closely spaced, then that particular location remains nearly
stationary for excitation frequencies between o1 and o2. Moreover, if the node locations are
properly selected, a region of nearly zero amplitudes can be imposed along the elastic structure for
a given localized harmonic force without using any rigid supports, effectively quenching vibration
in that segment of the structure. A detailed procedure to assist in the selection of the attached
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spring–mass systems was outlined, and numerical experiments were performed to validate the
utility of the proposed scheme of imposing a single or multiple nodes during harmonic excitations
for the collocated and non-collocated cases.
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